Stereoselective Construction of Vicinal Diamines. Part 2.1 Synthesis of Indenopyrazines

Barry S. Orlek* and Diane Lightowler

SmithKline Beecham Pharmaceuticals, Coldharbour Road, The Pinnacles, Harlow, Essex CM19 5AD, UK

The trans-adduct 8 derived from indene and N,N-dichlorourethane serves as a precursor for the cis1.2 -diaminoindane 6 and the trans-diamines 7 and 14. Conversion of 6 and 14 into the triazabenzocycloheptafluorenes 1 and 2, respectively, via the indenopyrazines $\mathbf{4}$ and $\mathbf{5}$ is described.

The synthesis of conformationally restricted analogues 1 and 2 was undertaken as part ${ }^{1}$ of a programme to investigate the link

$14 \mathrm{a}-\mathrm{H}$ and $12 \mathrm{c}-\mathrm{H}$ cis
$24 \mathrm{a}-\mathrm{H}$ and 12c-H trans

3
between conformation and biological activity in a series of compounds related to the antidepressant drug mianserin 3.

The problem of constructing the target compounds may be logically reduced to that of obtaining the cis- and transindenopyrazines 4 and 5 , which are in principle accessible from suitably functionalised 1,2-diaminoindanes (Scheme 1). The

Scheme 1
initial task was therefore the stereoselective synthesis of cis and trans vicinal diamines 6 and 7. Although methods are available for setting up vicinal diamines of this type, the most frequently used procedures, e.g. via epoxides, are lengthy. An alternative approach was therefore investigated. ${ }^{2}$ The trans-adduct $\mathbf{8}^{3}$ derived from indene and N, N-dichlorourethane was selected as a precursor for both cis- and trans-1,2-diaminoindanes (Scheme 2). \dagger When adduct 8 was treated with sodium azide in $N, N-$ dimethylformamide exclusive formation of the cis-azide 9 was observed. This stereochemical outcome is consistent with direct $\mathrm{S}_{\mathrm{N}} 2$ displacement, and precludes neighbouring group participation under these conditions. ${ }^{4}$

The behaviour of azide ion in this context stands in contrast to results obtained with weakly basic poor nucleophiles. For example, the reaction of adduct $\mathbf{8}$ with aniline requires assistance from the adjacent carbamate group and leads to the transsubstituted product. ${ }^{2}$ Pretreatment of the adduct 8 with sodium hydride to form the aziridine $\mathbf{1 0}$ followed by reaction with sodium azide produced the trans-isomer $11 .{ }^{5}$ The stereochemistry of the products was assigned by ${ }^{1} \mathrm{H}$ NMR

[^0]

Scheme 2 Reagents: i, $\mathrm{NaN}_{3}, \mathrm{DMF}$; ii, $\mathrm{NaH}, \mathrm{DMF}$; iii. $\mathrm{NaN}_{3}, \mathrm{NH}_{4} \mathrm{Cl}$, DMF
spectroscopy on the basis that the chemical shift difference between the protons at $\mathrm{C}-3$ in 1,2-disubstituted indanes is greater for trans-substitution. ${ }^{6}$ These protons appear at $\delta 2.80$ and 3.22 in cis-azide 9 whereas the trans-isomer 11 gives signals at $\delta 2.70$ and 3.30 .

Reduction of compound 9 with lithium aluminium hydride afforded the corresponding diamine 6 (Scheme 3). Subsequent

Scheme 3 Reagents and conditions: i, $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$; ii, diethyl oxalate, toluene, reflux; iii, alane, $\mathrm{Et}_{2} \mathrm{O}$
condensation with diethyl oxalate followed by reduction with alane produced the required cis-indenopyrazine 4 . Construction of the less favoured trans ring junction proved more difficult. Condensation of the trans-diamine 7 with diethyl oxalate failed to give the expected oxamide, presumably due to competing intermolecular reactions (Scheme 4). This problem was overcome by protection of the primary amine with a 4-methoxybenzyl group. The protected diamine precursor 13 was obtained by reaction of 8 with 4-methoxybenzylamine after in situ formation of the aziridine 10 . Subsequent reduction with lithium aluminium hydride afforded aminoindane 14.

Condensation of the aminoindane 14 with diethyl oxalate produced the required oxamide 15 , although the conditions were far more vigorous than those required to form the ciscompound. Reduction with alane, followed by deprotection

Scheme 4 Reagents and conditions: i. $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}$; ii, diethyl oxalate, toluene, reflux; iii, $\mathrm{NaH}, \mathrm{DMF}$ then $p-\mathrm{OMe}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NH}_{2}: \mathrm{iv}^{2}, \mathrm{LiAlH}_{4}$, $\mathrm{Et}_{2} \mathrm{O}: v$, diethyl oxalate. mesitylene. reflux: vi, alane, $\mathrm{Et}_{2} \mathrm{O}$; vii, TFA, $\mathrm{H}_{2} \mathrm{SO}_{4}$, thioanisole

- $17 \mathrm{R}=\mathrm{CN}$ ii $\square 19 \mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$ $\xrightarrow{\text { iv }}$

$\xrightarrow{\text { iii }}$

Scheme 5 Reagents and conditions: i, 2-chloronicotinonitrile, KF, DMF; ii, $\mathrm{KOH}, \mathrm{EtOH}, 100^{\circ} \mathrm{C}$: iii. $\mathrm{LiAlH}_{4}, \mathrm{Et}{ }_{2} \mathrm{O}$; iv, $\mathrm{PPA}, 100^{\circ} \mathrm{C}$; v, KOH , $\mathrm{EtOH}, 60-80^{\circ} \mathrm{C} ;$ vi, $\mathrm{MeSO}_{3} \mathrm{H}, \mathrm{P}_{2} \mathrm{O}_{5}$
using trifluoroacetic acid-sulfuric acid-thioanisole ${ }^{7}$ completed the synthesis of the trans-indenopyrazine 5 .

Condensation of the cis- and trans-indenopyrazines 4 and 5 with 2 -chloronicotinonitrile produced 17 and $\mathbf{1 8}$ respectively (Scheme 5). Alkaline hydrolysis of compounds 17 and 18, employing milder conditions in the case of the trans-isomer 18 to avoid epimerisation, afforded the acids 19 and 20, respectively. Reduction with lithium aluminium hydride gave the alcohols 21 and 22. The trans-alcohol 22 cyclised smoothly in methanesulfonic acid-phosphorous pentoxide to give the triazabenzocycloheptafluorene 2. Under similar conditions the cis-precursor 21 was recovered unchanged. The desired cyclisation of compound 21 was effected using polyphosphoric acid at $100^{\circ} \mathrm{C}$ although the yield was modest. The isolation of indan-2-one as a minor product from this reaction suggests that the low yield of the triazabenzocycloheptafluorene $\mathbf{1}$ is due at least in part to a competing fragmentation pathway (path a in Scheme 5 followed by hydrolysis).
${ }^{1} \mathrm{H}$ NMR spectra of triazabenzocycloheptafluorenes 1 and 2 revealed couplings (J) of 7 and 10 Hz , respectively, for the methine protons at $\mathrm{C}-12 \mathrm{c}$ and $\mathrm{C}-4 \mathrm{a}$. In the case of the cisisomer 1 confirmation of stereochemistry was provided by an X-ray analysis (Fig. 1).

Experimental

Melting points were obtained on a Kofler hot-stage apparatus and are uncorrected. NMR spectra were recorded on a Varian CFT-20, a JEOL GX-270, a Bruker WM-250 or a Bruker AM400 spectrometer using tetramethylsilane as internal standard with coupling constants (J) given in Hz . Mass spectra were obtained on an AEI MS9 (70 ev) or a JEOL DX303 (70 ev) spectrometer and IR spectra on a Perkin-Elmer 197 spectrometer. All evaporations of solvent were carried out under reduced pressure, and organic solutions were dried over sodium sulfate. Silica gel used for column chromatography was Merck

Fig. 1 Crystal structure of $\mathbf{1}$ showing crystallographic numbering

Kieselgel 60. Standard work-up for lithium aluminium hydride reductions involved quenching with wet ether followed by water, and then filtration to remove precipitated aluminium salts. Light petroleum refers to the fraction with b.p. $60-80^{\circ} \mathrm{C}$.
cis-1-A-ido-2-ethoxycarbonylaminoindane 9.-A solution of trans-1-chloro-2-ethoxycarbonylaminoindane $8(6.0 \mathrm{~g}, 0.025$ mol) in dry N, N-dimethylformamide (DMF) ($25 \mathrm{~cm}^{3}$) was treated with sodium azide $(1.95 \mathrm{~g}, 0.03 \mathrm{~mol})$ and the mixture was stirred in the dark for 48 h . The reaction was diluted with water and extracted into ether. The combined extracts were washed with water followed by brine. Concentration of the dried organic phase followed by chromatography on silica gel using a graded eluent of $5-10 \%$ ethyl acetate in light petroleum afforded the title compound 9 as a colourless oil (4.8 g, 77\%), $r_{\text {max }}($ film $) \mathrm{cm}^{1} 3320(\mathrm{NH}), 2090\left(\mathrm{~N}_{3}\right)$ and $1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(80$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 2.80(1 \mathrm{H}, \mathrm{dd}, J 16$ and 8.5 , $3-\mathrm{H}), 3.22(1 \mathrm{H}, \mathrm{dd}, J 16$ and $8,3-\mathrm{H}), 4.18\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{OCH}_{2}\right)$, $4.60(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.88(1 \mathrm{H}, \mathrm{d}, J 6,1-\mathrm{H}), 5.25(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{NH})$ and $7.30\left(4 \mathrm{H}, \mathrm{m}\right.$, aromatic); $m /=218\left(\mathrm{M}^{+}-\mathrm{N}_{2} ; 10 \%\right), 204$ (2), 189 (5), $158(12), 145(20), 130(100)$ and $118(33)$ [Found: $\left(\mathrm{M}^{+}-\mathrm{N}_{2}\right) 218.1061 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\left.M, 218.1068\right]$.
cis-2-Methylaminoindan-1-amine 6.-A solution of the azide $9(5.0 \mathrm{~g}, 0.02 \mathrm{~mol})$ in dry ether $\left(35 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred suspension of lithium aluminium hydride $(3.85 \mathrm{~g}, 0.10$ mol) in dry ether ($35 \mathrm{~cm}^{3}$), cooled to ice temp., under nitrogen. After stirring at room temp. for 3 d , standard work-up produced a red oil (3.3 g). Bulb-to-bulb distillation ($150^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$) afforded the title compound 6 as a colourless oil ($2.6 \mathrm{~g}, 81 \%$), $r_{\text {max }}($ film $) / \mathrm{cm}^{1} 3280 \mathrm{br}(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.48(3 \mathrm{H}$, br s, NH , exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.45\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.77(1 \mathrm{H}$, dd, $J 15$ and $7,3-\mathrm{H}), 2.95(1 \mathrm{H}, \mathrm{dd}, J 15$ and $7,3-\mathrm{H}), 3.26(1 \mathrm{H}, \mathrm{q}, J 7$, $2-\mathrm{H}), 4.24(1 \mathrm{H}, \mathrm{d}, J 7,1-\mathrm{H}), 7.18(3 \mathrm{H}, \mathrm{m}$, aromatic) and $7.20(1$ H, m, aromatic); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.41,35.54,56.68,63.99$, $123.78,124.70,126.31,127.19,140.54$ and $145.43 ; m / z 162\left(\mathrm{M}^{+}\right.$, $15 \%), 144(53), 131(63), 130(100), 119$ (74) and 103 (27). Bis hydrochloride salt m.p. $178-180^{\circ} \mathrm{C}$ (from methanol-ether) (Found: C, 50.7; $\mathrm{H}, 7.1 ; \mathrm{N}, 11.8, \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ requires C , 51.1; H, 6.9; N, 11.9%).
cis-4,4a,9,9a-Tetrahydro-1-methyl-1 H -indeno[1,2-b]pyrazine-1,2-dione 12.-A solution of the diamine $6(2.7 \mathrm{~g}, 0.017 \mathrm{~mol})$ in dry toluene ($100 \mathrm{~cm}^{3}$) containing diethyl oxalate ($2.3 \mathrm{~cm}^{3}, 0.017$
mol) was refluxed under nitrogen for 6 h . After cooling, the precipitate was filtered off and washed with ether to give the title compound $12\left(2.2 \mathrm{~g}, 60 \%\right.$), m.p. $230-231.5^{\circ} \mathrm{C}$ (from chloroform) (Found: C, 66.5; H, 5.3; N, 12.9. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, 66.65; $\mathrm{H}, 5.6 ; \mathrm{N}, 13.0 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3240(\mathrm{NH}), 1670$ and 1700 $\left.(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right]-\mathrm{DMSO}\right) 2.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.0(1 \mathrm{H}$, dd, $J 15$ and $7,9-\mathrm{H}), 3.38(1 \mathrm{H}, \mathrm{dd}, J 15$ and $7,9-\mathrm{H}), 4.33(1 \mathrm{H}, \mathrm{q}$, $J 7,9 \mathrm{a}-\mathrm{H}), 4.97(1 \mathrm{H}, \mathrm{dd}, J 7$ and 2 , collapses to a doublet $J 7$ on exchange with $\left.\mathrm{D}_{2} \mathrm{O}, 4 \mathrm{a}-\mathrm{H}\right), 7.3(4 \mathrm{H}, \mathrm{m}$, aromatic) and $8.8(1 \mathrm{H}$, br s, NH , exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; \delta_{\mathrm{C}}\left(20 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right]\right.$-DMSO) $32.95,36.21,54.58,59.95,124.76,127.03,128.54,139.64,140.69$, 155.50 and $156.17 ; m /=216\left(\mathrm{M}^{+}, 22 \%\right), 188(100), 144(26), 130$ (33) and 116 (60).
cis-2,3,4,4a,9,9a-Hexahydro-1-methyl-1H-indeno[1,2-b]pyr-a-ine 4.-A solution of aluminium chloride ($37.3 \mathrm{~g}, 0.28 \mathrm{~mol}$) in dry ether ($200 \mathrm{~cm}^{3}$) was added dropwise to a suspension of lithium aluminium hydride ($10.0 \mathrm{~g}, 0.26 \mathrm{~mol}$) in dry ether (200 cm^{3}) cooled to ice temp. under nitrogen. After stirring at room temp. for 3 h , the reaction was cooled in ice and treated portionwise with pyrazine $12(15.0 \mathrm{~g}, 0.069 \mathrm{~mol})$. The mixture was stirred overnight at room temp. and then quenched with wet ether and 10% sodium hydroxide ($1 \mathrm{dm}^{3}$). The aqueous layer was separated and extracted with ether. The combined organic layers were washed (brine), dried and concentrated to give the title compound 4 as a yellow oil ($12.7 \mathrm{~g}, 97 \%$), $v_{\text {max }}($ film $) / \mathrm{cm}^{1} 3260(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.80(1 \mathrm{H}$, br s, NH, exchanges with $\mathrm{D}_{2} \mathrm{O}$), 2.28-2.43 (4 H, overlapping CH_{3} and multiplet signals), $2.58(1 \mathrm{H}, \mathrm{m}), 2.76(1 \mathrm{H}, \mathrm{dd}, J 17$ and $7,9-$ $\mathrm{H}), 2.88(2 \mathrm{H}, \mathrm{m}), 3.0-3.12(2 \mathrm{H}$, overlapping, $9-\mathrm{H}$ and $9 \mathrm{a}-\mathrm{H})$, $4.25(1 \mathrm{H}, \mathrm{d}, J 5,4 \mathrm{a}-\mathrm{H})$ and $7.15-7.38\left(4 \mathrm{H}, \mathrm{m}\right.$, aromatic); $\delta_{\mathrm{C}}(68$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 30.85,42.57,43.81,52.35,60.63,65.18,123.52$, $125.60,126.51,127.52,141.58$ and $143.01 ; m /=188\left(\mathrm{M}^{+}, 82 \%\right)$, 173 (28), 159 (10), 144 (68), 130 (38) and 116 (100). Bis hydrochloride salt m.p. $225^{\circ} \mathrm{C}$ (decomp.) (from methanolether) (Found: C, $55.1 ; \mathrm{H}, 7.2 ; \mathrm{N}, 10.45 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2}$ requires C, $55.2 ; \mathrm{H}, 6.95 ; \mathrm{N}, 10.7 \%$).
trans-1-Azido-2-ethoxycarbonylaminoindane 11.-A solution of trans-1-chloro-2-ethoxycarbonylaminoindane $8(5.0 \mathrm{~g}, 0.02$ mol) in dry DMF ($75 \mathrm{~cm}^{3}$) was treated with sodium hydride $(0.69 \mathrm{~g}$ of an 80% dispersion, 0.023 mol$)$ and stirred, under nitrogen, at $40^{\circ} \mathrm{C}$ for 10 h . After stirring at room temp. for a further 9 h the reaction was treated with ammonium chloride $(1.24 \mathrm{~g}, 0.023 \mathrm{~mol})$ followed by sodium azide $(1.50 \mathrm{~g}, 0.023 \mathrm{~mol})$ and heated at $50-60^{\circ} \mathrm{C}$ for 50 min . The cooled mixture was poured into ice water and extracted into ether. After washing with water and brine the organic phase was dried and concentrated to give a brown oil (5.0 g). Purification on a short silica column using a graded eluent of $15-30 \%$ ethyl acetate in light petroleum afforded the title compound 11 as a pale yellow oil ($3.8 \mathrm{~g}, 67 \%$) which solidified on cooling, $v_{\text {max }}($ film $) / \mathrm{cm}^{1} 3320$ $(\mathrm{NH}), 2090\left(\mathrm{~N}_{3}\right)$ and $1690(\mathrm{C}=\mathrm{O}) ; \delta_{\mathbf{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.22(3$ $\left.\mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3}\right), 2.70(1 \mathrm{H}, \mathrm{dd}, J 16$ and $6,3-\mathrm{H}), 3.30(1 \mathrm{H}, \mathrm{dd}, J$ 16 and $7,3-\mathrm{H})$, 3.85-4.50 (3 H , overlapping, q, $J 7, \mathrm{OCH}_{2}$ and $\mathrm{m}, 2-\mathrm{H}), 4.65(1 \mathrm{H}, \mathrm{d}, J 6,1-\mathrm{H}), 5.1(1 \mathrm{H}, \mathrm{br}, \mathrm{NH})$ and $7.20(4 \mathrm{H}$, m , aromatic); $m / z 218\left(\mathrm{M}^{+}-\mathrm{N}_{2} ; 6 \%\right.$), 204 (4), 189 (5), 158 (6), 145 (27), 130 (100) and 118 (46).
trans-2-Methylaminoindan-1-amine 7.-A solution of the azide $11(0.49 \mathrm{~g}, 2.0 \mathrm{mmol})$ in dry ether ($10 \mathrm{~cm}^{3}$) was added dropwise to a suspension of lithium aluminium hydride $(0.38 \mathrm{~g}$, 10.0 mmol) in dry ether ($10 \mathrm{~cm}^{3}$) under nitrogen. After 2 h at room temp. standard work-up afforded the title compound 7 as a pale brown oil $(0.3 \mathrm{~g}, 92 \%)$ which was purified by bulb-to-bulb distillation $\left(175^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}\right), v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{1} 3320,3210$ $(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.73\left(3 \mathrm{H}, \mathrm{s}\right.$, exchanges with $\mathrm{D}_{2} \mathrm{O}$, NH and $\left.\mathrm{NH}_{2}\right), 2.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.58(1 \mathrm{H}, \mathrm{dd}, J 15$ and $8,3-$
H), $3.00(1 \mathrm{H}, \mathrm{q}, J 8,2-\mathrm{H}), 3.21(1 \mathrm{H}, \mathrm{dd}, J 15$ and $8,3-\mathrm{H}), 3.98(1$ $\mathrm{H}, \mathrm{d}, J 8,1-\mathrm{H})$ and $7.15-7.33\left(4 \mathrm{H}, \mathrm{m}\right.$, aromatic); $\delta_{\mathrm{c}}(68 \mathrm{MHz}$; CDCl_{3}) $35.06,36.65,62.38,72.18,123.12,124.73,126.75$, 127.37, 139.89 and $145.52 ; m /=162\left(\mathrm{M}^{+}, 27 \%\right), 144(70), 130$ (60), 119 (100) and 103 (23) (Found: $\mathrm{M}^{+}, 162.1158 . \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2}$ requires $M, 162.1151$).
trans-2-Ethoxycarbonylamino-1-(4-methoxybenzylamino)indane 13.-A solution of trans-1-chloro-2-ethoxycarbonylaminoindane 8 ($5.0 \mathrm{~g}, 0.021 \mathrm{~mol}$) in dry DMF ($75 \mathrm{~cm}^{3}$) was treated with sodium hydride $(0.69 \mathrm{~g}$, of an 80% dispersion, 0.023 mol) and stirred at $40^{\circ} \mathrm{C}$ under nitrogen for 12 h . After a further 10 h at room temp., 4 -methoxybenzylamine ($3.0 \mathrm{~cm}^{3}, 0.023 \mathrm{~mol}$) was added dropwise and the reaction was heated at $40^{\circ} \mathrm{C}$ for 24 h , and then at $50^{\circ} \mathrm{C}$ for a further 24 h . The reaction was concentrated and the residue diluted with water. After extraction into ethyl acetate the organic layers were washed (brine), dried and concentrated. Trituration with pentane followed by crystallisation from ethyl acetate-light petroleum afforded aminoindane $13\left(4.2 \mathrm{~g}, 59 \%\right.$), m.p. $115-116.5^{\circ} \mathrm{C}$ (Found: C, 70.5; H, 7.2; N, 8.1. $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires C, 70.6; H, 7.1; N, $8.2 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{1} 3200(\mathrm{NH})$ and $1710(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3}\right), 1.66(1 \mathrm{H}, \mathrm{br}, \mathrm{NH}$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.65(1 \mathrm{H}, \mathrm{dd}, J 15$ and $6,3-\mathrm{H}), 3.43(1 \mathrm{H}$, dd, $J 15$ and 7, $3-\mathrm{H}$), $3.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.89\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 4.0-4.2 $\left(3 \mathrm{H}\right.$, overlapping signals, OCH_{2} and $\left.2-\mathrm{H}\right), 4.33(1 \mathrm{H}, \mathrm{br}$, $1-\mathrm{H}$, collapses to a broad doublet, $J 5$ with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.9(1 \mathrm{H}, \mathrm{br}$, NH , exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.85(2 \mathrm{H}, \mathrm{d}, J 8$, aromatic) and $7.1-7.4$ ($6 \mathrm{H}, \mathrm{m}$, aromatic); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) $14.66,37.66$. $50.13,55.21,57.89,60.76,68.48,113.81,124.47,124.89$, 126.90, 127.92, 129.30, 132.77, 140.32, 142.74, 156.41 and 158.66; $m /=$ (M^{+}absent) 295 (3), 251 (8), 219 (90), 136 (55), 130 (60) and 121 (100).
trans-1-(4-Methoxyben-ylamino)-2-methylaminoindane 14.A solution of indane $13(1.70 \mathrm{~g}, 5.0 \mathrm{mmol})$ in dry tetrahydrofuran $\left(30 \mathrm{~cm}^{3}\right)$ was added dropwise to a stirred suspension of lithium aluminium hydride ($0.76 \mathrm{~g}, 20.0 \mathrm{mmol}$) in dry tetrahydrofuran (THF) $\left(15 \mathrm{~cm}^{3}\right)$ cooled in ice under nitrogen. The reaction was allowed to warm to room temp. and stirred overnight. After standard work-up, purification on silica gel, using a graded eluent of $0-30 \%$ methanol in ethyl acetate afforded the indane 14 as a pale yellow oil ($0.97 \mathrm{~g}, 69 \%$) which solidified on cooling after bulb-to-bulb distillation at $250^{\circ} \mathrm{C} /$ 0.1 mmHg (Found: $\mathrm{C}, 76.8, \mathrm{H}, 8.1 ; \mathrm{N}, 9.55 . \mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}$ requires C. $76.6 ; \mathrm{H}, 7.85 ; \mathrm{N}, 9.9 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3320(\mathrm{NH}) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $1.72(2 \mathrm{H}, \mathrm{brs}, \mathrm{NH}), 2.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.62(1$ H, dd, $J 17$ and 8, 3-H), 3.17-3.32 ($2 \mathrm{H}, \mathrm{m}$, overlapping, $2-\mathrm{H}$ and $3-\mathrm{H}), 3.78\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.92\left(2 \mathrm{H}, \mathrm{ABq}, J 13, \mathrm{CH}_{2} \mathrm{~N}\right), 4.03(1$ $\mathrm{H}, \mathrm{d}, J 5,1-\mathrm{H}), 6.87(2 \mathrm{H}, \mathrm{d}, J 9$, aromatic) and 7.16-7.40 (6 H , overlapping, aromatic); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.78,37.09,50.78$, $55.27,67.58,68.07,113.84,124.22,125.15,126.61,127.58,129.24$, 132.96, 141.12, 143.92 and $158.67 ; m /=\left(\mathbf{M}^{+}\right.$absent) 161 (25), $144(56), 136(78), 130(100), 121(87)$ and 116 (22).
trans-4,4a,9,9a-Tetrahydro-4-(4-methoxybenzyl)-1-methyl1 H -indeno[1,2-b] pyrazine-2,3-dione 15 .-A solution of the diamine $14(0.95 \mathrm{~g}, 3.4 \mathrm{mmol})$ in mesitylene ($20 \mathrm{~cm}^{3}$) containing diethyl oxalate ($0.5 \mathrm{~cm}^{3}, 3.7 \mathrm{mmol}$) was refluxed under nitrogen. After 15 h , diethyl oxalate ($0.5 \mathrm{~cm}^{3}$) was added, and refluxing was continued for a further 9 h . Filtration of the cooled reaction mixture followed by washing of the precipitate with ether afforded the title compound 15 as a cream coloured solid $(0.44 \mathrm{~g}$, 40%), m.p. $184-185^{\circ} \mathrm{C}$ (from chloroform-hexane) (Found: C, 71.1; $\mathrm{H}, 6.2 ; \mathrm{N}, 8.4 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 71.4 ; \mathrm{H}, 6.0 ; \mathrm{N}$, $8.3 \%) ; v_{\max }(\mathrm{Nujol}) / \mathrm{cm}^{-1} 1665(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.90$ ($1 \mathrm{H}, \mathrm{dd}, J 15$ and $11,9-\mathrm{H}$), 3.18 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}$), $3.26(1 \mathrm{H}, \mathrm{dd}, J$ 15 and $7,9-\mathrm{H}), 3.78\left(1 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.14(1 \mathrm{H}, \mathrm{m}, 9 \mathrm{a}-\mathrm{H}), 4.90(1$
$\left.\mathrm{H}, \mathrm{d}, J 16, \mathrm{CH}_{2} \mathrm{~N}\right), 6.85(2 \mathrm{H}, \mathrm{d}, J 7$, aromatic) and $7.1-7.45(6 \mathrm{H}$, overlapping signals, aromatic); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 31.20$, $33.07,46.79,55.29,63.07,63.85,114.36,124.68,125.90,127.76$, $127.85,127.89,128.51,136.46,128.61,158.77,158.94$ and 159.48; $m /=336\left(\mathrm{M}^{+}, 33 \%\right), 220(25), 136(25), 121(100)$ and 116 (73) (Found: $\mathrm{M}^{+}, 336.1475 . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires M. 336.1474).
trans-2,3,4,4a,9,9a-Hexahydro-4-(4-methoxyben-y/)-1-meth$y /-1 \mathrm{H}$-indeno $[1,2-\mathrm{b}]$ pyrazine 16 .-A solution of aluminium chloride ($6.9 \mathrm{~g}, 0.052 \mathrm{~mol}$) in dry ether ($65 \mathrm{~cm}^{3}$) was added dropwise under nitrogen to a suspension of lithium aluminium hydride ($2.0 \mathrm{~g}, 0.053 \mathrm{~mol}$) in dry ether ($65 \mathrm{~cm}^{3}$) cooled in ice. After stirring at room temp. for 1 h , the reaction was cooled in ice and treated portionwise with compound $15(4.4 \mathrm{~g}, 0.013$ mol). The mixture was stirred overnight at room temp. and then quenched with wet ether followed by 10% sodium hydroxide ($400 \mathrm{~cm}^{3}$). The aqueous layer was separated and extracted into ether. The combined organic layers were washed (brine), dried and concentrated to give pyrazine 16 as an oil ($3.90 \mathrm{~g}, 97 \%$). Maleate salt, m.p. $178-179.5^{\circ} \mathrm{C}$ (from acetone-methanol) (Found: C, 67.8; H, 6.7; N, 6.55. $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ requires C, 67.9: $\mathrm{H}, 6.65 ; \mathrm{N}, 6.6 \%) ; \dot{\delta}_{\mathrm{H}}\left(270 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right]$-DMSO $) 2.85-3.15(6 \mathrm{H}, \mathrm{m}$, overlapping signals), $3.25-3.45$ (3 H , m, overlapping signals), $3.63(1 \mathrm{H}, \mathrm{m}), 3.78\left(1 \mathrm{H}, \mathrm{d}, J 13, \mathrm{CH}_{2} \mathrm{~N}\right), 3.87\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, $4.10\left(1 \mathrm{H}, \mathrm{d}, J 13, \mathrm{CH}_{2} \mathrm{~N}\right), 4.41(1 \mathrm{H}, \mathrm{d}, J 10,4 \mathrm{a}-\mathrm{H}), 7.05(2 \mathrm{H}, \mathrm{d}$, $J 8$, aromatic) and 7.35-7.65 ($6 \mathrm{H}, \mathrm{m}$, aromatic); $\delta_{\mathrm{c}}(68 \mathrm{MHz}$; [${ }^{2} \mathrm{H}_{6}$]-DMSO) $30.81,40.42,47.82,49.86,50.26,55.07,64.14$, $68.11,113.80,123.34,125.62,127.45,128.00,130.21,135.70$, $137.50,138.50$ and $158.59 ; m / z$ (free base) $308\left(\mathrm{M}^{+} ; 1 \%\right.$), $188(29)$, 187 (100), 149 (20), 144 (15), 130 (18), 121 (48) and 53 (116).
trans-2,3,4,4a,9,9a-Hexahydro-1-methyl-1H-indeno[1,2-b]pyrazine 5.-A mixture of compound $16(8.5 \mathrm{~g}, 0.0275 \mathrm{~mol})$. sulfuric acid ($5.5 \mathrm{~cm}^{3}$), thioanisole ($27.5 \mathrm{~cm}^{3}$) and trifluoroacetic acid ($27.5 \mathrm{~cm}^{3}$) was refluxed under nitrogen for 75 min . The reaction was concentrated under reduced pressure and azeotropic distillation with xylene removed residual thioanisole. The resulting oil was dissolved in water and washed with ether. After the pH had been adjusted to 14 using 40% sodium hydroxide the aqueous phase was extracted into ether. The dried organic layers were concentrated and purified on silica gel using 10% methanol in ethyl acetate as eluent to give the title compound $5(3.8 \mathrm{~g}, 74 \%), v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3280(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.88(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 2.0-2.18(2 \mathrm{H}, \mathrm{m}$, overlapping), $2.32(1 \mathrm{H}, \mathrm{s}$, NCH_{3}), 2.66 (1 H, dd, $J 14$ and $11 \mathrm{H}, 9-\mathrm{H}$), $2.92(1 \mathrm{H}$, ddd, $J 11,3$ and 3, 2-Heq or $3-\mathrm{Heq}$), 3.02 ($1 \mathrm{H}, \mathrm{dd}, J 14$ and $6,9-\mathrm{H}$), 3.12-3.24 ($2 \mathrm{H}, \mathrm{m}$, overlapping), 3.81 ($1 \mathrm{H}, \mathrm{d}, J 10,4 \mathrm{a}-\mathrm{H}$) and $7.10-7.30(4$ H, m, aromatic); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) 34.20, 43.86, 46.96, $57.77,66.49,76.25,121.57,125.04,126.65,127.13,139.68$ and 142.84; $m / z 188\left(\mathrm{M}^{+} ; 40 \%\right.$), 187 (100), 173 (7), 144 (36), 130 (39), 121 (45) and 116 (73). Maleate salt m.p. 137-139 ${ }^{\circ} \mathrm{C}$ (from acetone-ether) (Found: C, 63.3; H, 6.8; N, 9.2. $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 63.1, \mathrm{H}, 6.6, \mathrm{~N}, 9.2 \%$).
cis-4-(3-Cyano-2-pyridyl)-2,3,4,4a,9,9a-hexahydro-1-methy/-1H-indeno[1,2-b] pyrazine 17.-A solution of cis-piperazine 4 ($3.77 \mathrm{~g}, 0.02 \mathrm{~mol}$) in dry DMF ($45 \mathrm{~cm}^{3}$) was treated with 2 chloronicotinonitrile ($3.06 \mathrm{~g}, 0.022 \mathrm{~mol}$) and potassium fluoride ($3.49 \mathrm{~g}, 0.06 \mathrm{~mol}$). The mixture was heated at reflux, under nitrogen, for 24 h and during this period additional 2chloronicotinonitrile $(1.1 \mathrm{~g}, 0.008 \mathrm{~mol})$ was added. The reaction mixture was then poured into water and extracted into chloroform. The combined organic layers were washed with water, dried and concentrated. Purification on silica gel using a graded eluent of $30-45 \%$ ethyl acetate in light petroleum afforded the nitrile $17(4.24 \mathrm{~g}, 73 \%), v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2200$ $(\mathrm{C} \equiv \mathrm{N}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$; resolution enhanced spectrum)
$2.33\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.41(1 \mathrm{H}$, ddd, $J 12,12$ and $3,2-\mathrm{Hax}), 2.78$ (1 H, ddd, $J 12,3$ and $3,2-\mathrm{Heq}), 2.94(1 \mathrm{H}, \mathrm{dd}, J 16$ and $5,9-\mathrm{H})$, $3.01(1 \mathrm{H}, \mathrm{t}, J 5,9 \mathrm{a}-\mathrm{H}), 3.07(1 \mathrm{H}, \mathrm{d}, J 16,9-\mathrm{H}), 3.36(1 \mathrm{H}, \mathrm{ddd}, J$ 14, 12 and 3, 3-Hax), 4.34 ($1 \mathrm{H}, \mathrm{ddt}, 14,3,3$ and 2, 3-Heq), 6.02 $(1 \mathrm{H}, \mathrm{d}, J 5,4 \mathrm{a}-\mathrm{H}), 6.78(1 \mathrm{H}$, dd, $J 7$ and 5 , aromatic), $7.02-7.34$ ($4 \mathrm{H}, \mathrm{m}$, aromatic), 7.81 (1 H, dd, $J 8$ and 2 , aromatic) and 8.36 ($1 \mathrm{H}, \mathrm{dd}, J 5$ and 2 , aromatic); $\delta_{\mathrm{C}}\left(20 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 35.52,43.63$, $43.95,53.94,62.60,66.41,93.33,113.68,118.14,123.26,125.51$, $126.55,127.66,140.44,141.23,144.34,152.04$ and $159.89 ; \mathrm{m} /=$ $290\left(\mathrm{M}^{+} ; 30 \%\right.$), 275 (7), 233 (100), 232 (46), 158 (30), 144 (15), 130 (15), 116 (38) and 115 (36).
cis-4a,5,6,7.12,12c-Hexahydro-5-methyl-4H-5,7a,8-tria=a-ben=o[5,6]cylohepta[1,2,3,4-def] fluorene 1.-The nitrile 17 $(4.0 \mathrm{~g}, 0.014 \mathrm{~mol})$ was treated with a solution of potassium hydroxide (20.0 g) in ethanol ($80 \mathrm{~cm}^{3}$) and the mixture was heated at $100^{\circ} \mathrm{C}$, under nitrogen, for 30 h . After evaporation of solvent the residue was dissolved in water and washed with dichloromethane. The pH of the aqueous phase was adjusted to 6 with dilute hydrochloric acid and the solution was evaporated to dryness. Extraction of the residue into chloroform followed by evaporation of solvent afforded the acid 19 as a brown foam $(5.2 \mathrm{~g})$. A solution of compound $19(4.9 \mathrm{~g}, 0.016 \mathrm{~mol})$ in dry THF ($100 \mathrm{~cm}^{3}$) was added dropwise, under nitrogen, to a suspension of lithium aluminium hydride ($5.0 \mathrm{~g}, 0.13 \mathrm{~mol}$) in dry THF ($50 \mathrm{~cm}^{3}$). The mixture was heated under reflux for 2.5 h. Standard work-up followed by chromatography on silica gel using 2\% methanol in ethyl acetate as eluent afforded alcohol 21 $(2.3 \mathrm{~g} ; 60 \%$ based on nitrile $), r_{\max }($ film $) / \mathrm{cm}^{-1} 3300(\mathrm{OH}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}: \mathrm{CDCl}_{3}\right) 2.40\left(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.56(1 \mathrm{H}, \mathrm{m}), 2.73(1 \mathrm{H}, \mathrm{m})$, $2.83(1 \mathrm{H}, \mathrm{dd}, J 16$ and $6,9-\mathrm{H}), 3.10-3.25(2 \mathrm{H}, \mathrm{m}), 3.30-3.49(2$ H, m), $4.22(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CHOH}), 4.56(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CHOH})$, $4.98(1 \mathrm{H}, \mathrm{d}, J 5,4 \mathrm{a}-\mathrm{H}), 6.80-7.30(5 \mathrm{H}, \mathrm{m}$, aromatic), $7.54(1 \mathrm{H}$, dd, $J 7$ and 2) and 8.36 (1 H , dd, $J 6$ and 2) (Found: M^{+}, 295.1687. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 295.1685$). The alcohol 21 $(2.14 \mathrm{~g}, 7.25 \mathrm{mmol})$ was added gradually to polyphosphoric acid (50 g) with stirring at $100^{\circ} \mathrm{C}$. After a further 3 h at this temperature the reaction mixture was poured into ice, washed with ether. then basified and extracted into chloroform. Concentration of the combined chloroform layers followed by purification on silica gel using 2% methanol in ethyl acetate as eluent afforded the title compound $1(0.78 \mathrm{~g}, 39 \%)$, m.p. $118-$ $120^{\circ} \mathrm{C}$ (from ether-pentane) (Found: C, 77.6; H, 6.85; N, 15.0. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3}$ requires $\left.\mathrm{C}, 77.95 ; \mathrm{H}, 6.9 ; \mathrm{N}, 15.15 \%\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.75-2.98(3 \mathrm{H}, \mathrm{m}), 3.03(1 \mathrm{H}, \mathrm{m})$, $3.22(1 \mathrm{H}, \mathrm{dd}, J 16$ and $9,4-\mathrm{H}), 3.35(1 \mathrm{H}, \mathrm{d}, J 16,12-\mathrm{H}), 3.72(1$ H. ddd, $J 9.7$ and $7,4 \mathrm{a}-\mathrm{H}), 4.82(1 \mathrm{H}, \mathrm{d}, J 16,12-\mathrm{H}$ overlapping with $1 \mathrm{H}, \mathrm{m}), 5.28(1 \mathrm{H}, \mathrm{d}, J 7,12 \mathrm{c}-\mathrm{H}), 6.53(1 \mathrm{H}, \mathrm{dd}, J 7$ and 5 , aromatic). $7.0-7.30(4 \mathrm{H}, \mathrm{m}$, aromatic) and $8.0(1 \mathrm{H}, \mathrm{m}$, aromatic): $\delta_{\mathrm{c}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right), 27.77,39.55,42.95,44.41$, $49.00,58.07,63.72,114.28,121.33,123.38,123.61,128.90$, $137.00,138.72,139.93,140.16,145.77$ and $158.25 ; m /=277\left(\mathrm{M}^{+}\right.$; 10%), 262 (25), 233 (11), 220 (100), 219 (46) and 204 (10) (Found: $\mathbf{M}^{+}, 277.1574 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3}$ requires $M, 277.1574$). Concentration of the ether wash liquors afforded light brown needles ($0.13 \mathrm{~g}, 13 \%$) shown to be identical to an authentic sample of indan-2-one by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
trans-4-(3-Cyano-2-pyridyl)-2,3,4,4a,9,9a-hexahydro-1-meth$.1 / 1 \mathrm{H}$-indeno[1,2-b] pyrazine 18.-A mixture of the trans-piperazine 5 ($1.8 \mathrm{~g}, 9.8 \mathrm{mmol}$), 2-chloronicotinonitrile ($2.0 \mathrm{~g}, 14.7$ $\mathrm{mmol})$ and potassium fluoride $(1.70 \mathrm{~g}, 29.4 \mathrm{mmol})$ in dry DMF $\left(25 \mathrm{~cm}^{3}\right)$ was heated under nitrogen at $140^{\circ} \mathrm{C}$ for 29 h . The reaction was diluted with water, basified with sodium hydroxide and extracted into chloroform. The combined organic layers were washed with brine, dried and concentrated. Purification on silica gel using an eluent graded from 50% ethyl acetate in light petroleum to ethyl acetate afforded nitrile 18 as an oil (1.39 g ,
49%) which crystallised on cooling. $v_{\max }($ film $) / \mathrm{cm}^{1} 2225(\mathrm{C} \equiv \mathrm{N})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 270 \mathrm{MHz}\right) 2.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.53(1 \mathrm{H}, \mathrm{ddd}, J 12,12$ and 3, $2-\mathrm{Hax}), 2.65-2.90(2 \mathrm{H}, \mathrm{m}$, overlapping, $9-\mathrm{H}$ and $9 \mathrm{a}-\mathrm{H})$, $2.98(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{Heq}), 3.08(1 \mathrm{H}, \mathrm{dd}, J 12$ and $5,9-\mathrm{H}), 3.28(1 \mathrm{H}$, ddd, $J 12,12$ and $3,3-\mathrm{Hax}), 3.82$ (1 H , ddd, $J 12,3$ and $3,3-\mathrm{Heq}$), $4.57(1 \mathrm{H}, \mathrm{d}, J 11,4 \mathrm{a}-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{d}, J 9$, aromatic), 6.90-7.25(4 H, m, aromatic), $7.95(1 \mathrm{H}, \mathrm{dd}, J 9$ and 2 , aromatic) and $8.48(1 \mathrm{H}$, dd, $J 5$ and 2 , aromatic); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 34.22,43.30,56.00$, $56.21,66.97,72.17,104.01,116.46,118.46,123.99,124.91$, $125.94,126.71,139.43,141.74,142.58,151.61$ and $164.10 ; m /=$ $290\left(\mathrm{M}^{+}, 48 \%\right), 233(35), 232(26), 158(83)$ and 116 (100) (Found: $\mathbf{M}^{+}, 290.1526 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4}$ requires M, 290.1531). Oxalate salt m.p. $210-212^{\circ} \mathrm{C}$ (from methanol-acetone) (Found: C, 63.1; $\mathrm{H}, 5.3 ; \mathrm{N}, 14.7 . \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C , 63.15 ; H, 5.3; N, 14.7%).
trans-4a, 5,6,7,12,12c-Hexahydro-5-methyl-4H-5,7a,8-tria-abenzo [5,6]cyclohepta[1,2,3,4-def] fluorene 2.-A stirred solution of the nitrile $18(2.1 \mathrm{~g}, 7.2 \mathrm{mmol})$ in ethanol $\left(50 \mathrm{~cm}^{3}\right)$ was treated with potassium hydroxide $(4.2 \mathrm{~g})$ and heated at $60^{\circ} \mathrm{C}$ for 84 h . A further portion of potassium hydroxide (2.1 g) was added and heating was continued at $80^{\circ} \mathrm{C}$ for 10 h . After evaporation of the solvent, the reaction was diluted with water and washed with chloroform. The pH of the aqueous phase was adjusted to 5.4 with dilute hydrochloric acid and the solution was evaporated to dryness. Extraction of the residue into chloroform afforded the acid 20 as a foam ($1.3 \mathrm{~g}, 58 \%$). The chloroform washes were concentrated and further hydrolysis afforded a second crop (0.5 g) of $\mathbf{2 0}$. A solution of compound $20(0.70 \mathrm{~g}, 2.3 \mathrm{mmol})$ in dry THF ($35 \mathrm{~cm}^{3}$) was added dropwise under nitrogen to an ice cooled suspension of lithium aluminium hydride $(0.67 \mathrm{~g}, 18.4 \mathrm{mmol})$ in the dry THF $\left(10 \mathrm{~cm}^{3}\right)$. After stirring at room temp. for 1 h , standard work-up followed by chromatography on silica gel using 10% methanol in ethyl acetate as eluent afforded the alcohol $22(0.49 \mathrm{~g}, 73 \%)$, $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3150(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(80 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.30-3.30(10$ H, m, overlapping), $4.56(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CHOH}), 4.65(1 \mathrm{H}, \mathrm{d}, J 9$, $4 \mathrm{a}-\mathrm{H}), 4.98(1 \mathrm{H}, \mathrm{d}, J 14, \mathrm{CHOH}), 5.90(1 \mathrm{H}, \mathrm{d}, J 8$, aromatic), $6.70-7.35(4 \mathrm{H}, \mathrm{m}$, aromatic), $7.65(1 \mathrm{H}, \mathrm{dd}, J 7$ and 2 , aromatic) and $8.65\left(1 \mathrm{H}\right.$, dd, $J 4$ and 2, aromatic) (Found: $\mathrm{M}^{+}, 295.1690$. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}$ requires $M, 295.1685$). To a stirred solution of alcohol $22(0.83 \mathrm{~g}, 2.8 \mathrm{mmol})$ in methanesulfonic acid ($2.9 \mathrm{~cm}^{3}$) was added phosphorous pentoxide (2.0 g) and the mixture was stirred at room temperature for 48 h . The reaction was poured into ice, basified with 40% sodium hydroxide and extracted into chloroform. Chromatography on silica gel using 5% methanol in ethyl acetate as eluent afforded the title compound $2(0.64 \mathrm{~g}$, 82%), $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 2.28(1 \mathrm{H}, \mathrm{m}, 4 \mathrm{a}-\mathrm{H}), 2.43(3 \mathrm{H}, \mathrm{s}$, CH_{3}), 2.60-2.86 ($2 \mathrm{H}, \mathrm{m}$, overlapping, 4-H and 6-Hax), $2.93(1$ H, dd, J 15 and 7, 4-H), 3.02 ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{Heq}$), 3.38 ($1 \mathrm{H}, \mathrm{d}, J$ $15,12-\mathrm{H}), 3.51(1 \mathrm{H}$, ddd, $J 15,13$ and $4,7-\mathrm{Hax}), 4.28(1 \mathrm{H}$, $\mathrm{d}, J 15,12-\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 15,7-\mathrm{Heq}), 4.74(1 \mathrm{H}, \mathrm{d}, J 10$, $12 \mathrm{c}-\mathrm{H}), 6.65(1 \mathrm{H}, \mathrm{dd}, J 9$ and 5 , aromatic), $7.0-7.16(3 \mathrm{H}, \mathrm{m}$, aromatic), $7.28(1 \mathrm{H}, \mathrm{m}$, aromatic) and $8.08(1 \mathrm{H}, \mathrm{dd}, J 5$ and 2 , aromatic); $\delta_{\mathrm{C}}\left(68 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 32.54,37.62,43.23,47.05$, $54.82,66.42,73.02,115.69,123.37,124.73,127.94,128.80$, $135.59,136.59,137.92,139.93,145.93$ and $156.89 ; m /=277$ $\left(\mathrm{M}^{+}, 15 \%\right), 262(28), 233(16), 220(100), 219$ (40) and 204 (10) (Found: $\mathbf{M}^{+}, 277.1580 . \quad \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3}$ requires M, 277.1579). Maleate salt, m.p. $206-207^{\circ} \mathrm{C}$ (decomp.) (from acetone-ether) (Found: C, 67.3; H, 5.8; N, 10.7. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 67.2 ; \mathrm{H}, 5.9 ; \mathrm{N}, 10.7 \%$).

Crystal Data for Compound 1. $-\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3}, M=277.37$. Orthorhombic, $a=8.644$ (1), $b=15.179$ (2), $c=22.204$ (4) \AA, $V=2913 \AA^{3}$, space group Pnab, $Z=8$. The compound is a racemate. $R=0.054$ for 1367 independent observed reflections [Fo $>3 \sigma(\mathrm{Fo}) ; 0 \leqslant 55^{\circ}$ with $\mathrm{Cu}-\mathrm{K} x$ radiation]. Tables of
fractional coordinates, bond lengths and angles, hydrogen coordinates and thermal parameters have been deposited with the Cambridge Crystallographic Database.*

Acknowledgements

The authors would like to thank Dr. D. J. Williams (Imperial College) for carrying out the X-ray determination and Mr. D. M. Smith for assistance with interpretation of NMR spectra.

* For full details of the deposition scheme see 'Instructions for Authors.' J. Chem. Soc.. Perkin Trans. 1. 1993, issue 1.

2 For a preliminary account of this work see B. S. Orlek. Tetrahedron Lett., 1986. 1699. References to other methods for preparing vicinal diamines are cited therein.
3 B. J. Walker and P. J. Wrobel, J. Chem. Soc.. Chem. Commun.. 1980. 462.

4 Y. Pocker, J. Chem. Soc., 1959, 2319.
5 M. Saito. Y. Kayama, T. Watanabe, H. Fukushima, T. Hara. K. Koyano, A. Takenaka and Y. Sasada, J. Med. Chem., 1980. 23, 1364. 6 C. F. Huebner, E. M. Donoghue. C. J. Novak. L. Dorfman and W. Wenkert. J. Org. Chem., 1970, 35, 1149.
7 Y. Kiso. K. Ukawa and T. Akita, J. Chem. Soc.. Chem. Commum. 1980. 101.

References

1 Part 1, B. S. Orlek. G. T. Borrett and D. M. Smith, preceding paper. Paper no. 300733 B .

Paper 3/00734K
Received 5th February 1993
Accepted 25th February 1993

[^0]: \dagger For convenience only one stereoisomer is shown.

